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The problem of rotation of a rigid body about Its center of inertia in pre- 
aence of steady cyclic rotations within that body without however influencing 
Its mass distribution, was first stated and investigated by Volterra. in a 
number of pa#ers over the period 1895 - 1899, and the basic results are given 
In his book On the Theory of Latitude Variation" Cl]. He proves the fund- 
amental lntegrabllity of equations for the direction cosines of the body, In 
terms of elliptic funcLlons of time. A particular case of Volterra's problem 
was Investigated In more detail in the paper by Ena [2], in which he examines 
the motion of an asymmetric rigid body about one of the principal axes of 
inertia; a steady Internal rotation of the body takes place, analogous to 
the uniform rotation of a flywheel. 

In the present paper we investigate another particular case of Volterra's 
problem, when the body In question has a dynamic axial symmetry, and contains 
Inside It a system of flywheels, rotating tiith velocities constant with re- 
spect to the body. The problem of motion of a body when the flywheels rotate 
with velocities constant with respect to Inertial space, can also be reduced 
to the present case. We also assume that the total kinetic momentum of the 
system Is constant during the motion, I.e. external perturbations are absent. 
Following the analysis of equations of the problem, a geometrical represen- 
tation of the motion is given, possible types of motion of the body are shown 
and their dependence on the parameters of the system and on the Initial con- 
ditions, Is established. It Is also shown, that the trajectory of the axis 
of symmetry describes, on the surface of the unit sphere, looped curves ana- 
logous to those met In Lagrange's problem. 

1. Initial rrlatlonshlpr. Let a system of n flywheels be situated 

within the frame of the carrying body, and let their axes be fixed in the 

frame and defined In terms of direction cosines crRryr (where k denotes 

the'kth flywheel) relative to the principal xv#-axes of the frame. Then, 

assuming that the moments of inertia of the body (together with the flywheels) 

relative to its principal axes X, y and E are A, B, and C , respec- 

tively, and that the proJections of the corresponding angular momenta of the . 
flywheels on those axes are H., H, and H,, we can write the equations of 
conservation of total angular momentum as follows: 

754 
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Aox+Hx= Lsincpsin6, Bq, + H, = Lcoscpsin6 

Co,+ H, =Lcos6 (1.1) 

H,= i HZ&k, H,=i Hkh Hz = i Hd'k (Igk = zknk) 
k=l k=l Ii=1 

Here I, Is the moment of Inertia of the kth flywheel, Cl, Is Its angular 

velocity relative to the body, W,UJ,W, are the projections of the angular 

velocity vector on its principal axes, while C$I, 6 and $ are Eulerlan 

angles, defining the position of the X, y and a- axes relative to fixed 

QC-axes, In which the C-axis coincides with the vector of total kinetic 

momentum L of the system. Replacing In (1.1) the angular velocities with 

the corresponding expressions in terms of Euler angles and their derivatives 

and solving It with respect to these derivatives, we arrive at 

@+-$) Lsin4sincpcos(P- ( 
+cosrp- +sinq 

) V.2) 

This system can be further Integrated in two particular cases of rotation 

of the flywheels. First of them, considered initially by Volterra Cl], cor- 

responds to the case when the velocities of rotation of the flywheels are 

maintained constant with respect to the body, i.e. h',= const , and conse- 

quently, H,, I?,, H,= const . The other case for which exact Integration 

of (1.2) Is possible, is characterized by the fact, that the absolute velo- 

cities of rotation of the flywheels about their axes, are constant. 

To find the necessary integrals for each of these cases, we shall write 

the system of Volterra's dynamic equations for our system [3] 

and the equations of rotation of the flywheels 

Ik(Pk'+ %'ak + %'Pk + %‘rk) = mk (1.4) 

Here A~ is the angular momentum at the shaft of the kt:. flywheel. Assum- 

ing now that n,= ccnst , multiplying the equations of (1.3) by UJ,, IN, and 

u* a respectively, and adding them, we obtain the following Integral 
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‘i2 Atox + f/z BoJ,~ + “I2 Co,2 = const (1.5) 

In the second case it is enough to put m,- 0 in (1.4), after which, 

performing operations analogous to the above, it is easy to obtain, from 

(1.3), the Integral 

It can easily be shown that (1.6) is an energy integral. Indeed, if we 

write the expression for kinetic energy of the system in the form 131 

T = ‘,I1 .16l,y2 + *is Bo,2 + ‘I2 Cu,2 -+- 

(1.7) 

and take into account the fact that when mus 0 then from (1.4) SollOWS 

Ik (Rk-i-(~,ukiO.)vPk+O,rk)= hk = ci,Ust 0.8) 

then we shti~l :~Gialn the f'ollowln~ expression for 2' : 

2T = Au,” +- .Bq,” + c10)~~ - i Ik twzak i- o,pk + %~k)2i- i +$ (1.9) 
k-1 k=l 

which differs from the integral (1.6) by a constant term. 

Using (1.8) we can represent the vector H(H,H,h',) for the. given type of 

rotation of the flywheels, In the form 
n 

where tensor ci Is specified by the matrix of its components along the prin- 

cipal axes 

(1.11) 

where the summation under the X sign is performed from 1 to n . Then, 

the law of conservation of angular momentum of the system can be written as 

n 

(0-.G).w+~ hk=L (1.12) 
ii=1 

where 8 is the Inertia tensor of the body with the flywheels, defined on 

the principal axes by its components A, F and C . 

Each of Equations (1.12) will contain in its projections on the principal 
axes, all three components of the vector UJ . Consequently, in order to 
obtain from (1.12) three scalar equations each containing one component of 
fp , we must make use of another X'V'Z‘ coordinate system, rotated with 
respect to the principal axes of the body, 
axes to Y'I/'Z 

The matrix of rotation of xyt- 
'-axes can be obtained in a manner identical to that, used to 

determine the principal axes of Inertia of the body. We should note, that 
in the system of xyr-axes which may be called quasi-principal axes of the 
body, the form of (1.12) will be analogous to that of (1.1). Physical mean- 
ing however of the parameters 4, P and C together with H,, H, and ff, 
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will be altered somewhat. The coordinate transformation xyr - x'k'z 
results in the expression for kinetic energy assuming Its normal form, In 
which the products of various components of the vector of angular velocity 
u) of the body, do not appear. 

Both of the above cases can be described by the system of equations of 

the form (1.2) and possess the Integral of the form (1.5). Assumlmg the 

Eulerlan angles to be the basic variables defining the position of prlnclPal 

(or quasi-principal) axes of the body relative to the QjC-axes and replacing 

the constants X,, H, and X, with R , u and ,V according to the following 

relationships, 

i?, = AR sin p sin v, HV = BRcospsinv, H, = CRcos v 

R = [VJxlW + @4,/W-t (WC)*l"' 

we can write (1.2) as 

cp’= [g - (9 + q)]Leosfb+R[sinv cot 6cos(cp-p)-cosvJ 

lp+-$) Lsinfisin(pcosrq+ Rsinvsin (9-p) (1.13) 

$‘= (_!!$? + q]L-Rsinv cns~~)I”) 

and Its Integral (1.5), as 

TI+ ( 
sin2 cp - T+ qj]Lsin”6+ 

+ 2R [sin v sin + cos (cp - p) + cos v COB fi] = const (1.14) 

Next, llmltlng ourselves to the case when the carrier has axial dynamic 

symmetry, I.e. A - B , we can write (1.13) and Its Integral (1.14), as 

(1.15) 

+(+f)L cos6+R[sinv cot 6cos(cp--p)-cosv] 

W = R sinvsin(cp- cl), +' = 4-_Rsin vcos~~~u) 

asin + sin v sin 6 cos (cp -p) + cos v cos 6 = c 

(a=L/2R (l/C-l/A)) (1.16) 

Here o Is the constant of Integration. Using (1.16) we can obtain 

l/sin2 v sina 6 - (c - a sin2 6 - cos v cos 6)? (1.17) 

which can be represented as 

- R*fl (6) fz (6) (1.18) 

Here, functions fI (6) and f, @), which play a major part In the following 

Investigation are, obviously (1.19) 

fl (6) = a sin2 6 f cos (6 - v) - c, fz (8) = a sin2 6 Scos (0 + v) -C 
We see at once from (1.18), that motion of the body In the if -direction 

Is possible only within those ranges of values of the angle 6 , In which 
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the functions /I and fa have opposite signs. Circles on the unit sphere 

on which either fl- 0 or fa- 0 , represent the boundaries of these ranges. 

2. Invortlg~tlon O? tha tl(e) md f,(6) funotlonr. From (1.19) we see, 
that between j, and ja follow'lng relatlondhlps exist (2.1) 

jl(fi) = ji (--61, jl(6, y) = jz(e, -4, jl(67 a, C) = -ji(n - 6, -a, -c) 

We also see that the end-points of the Interval 0-G 6 dn , II and fa 
have the same values, while their derivatives with re'spect to ~6, are of 
the same magnitude, bl?t opposite sign. The relationship (2.1) shows, that 
it 1s sufficient to Investigate only one of these functions over the lnter- 
val -Jlf6<<n. Us:ng (1.16), we can represent Y, and Ya as 

(2.2) 
ji = sin v sin 6 [1 - cos (cp - p)], ji = - sin v sin fi [1 + cos(cp -PC)] 

from which we see, that on the boundaries of the Fe 
f 
Ions of possible motion 

where /I or Jz becomes equal to zero, cp - p f ti where k Is an Integer 
Apart from that, (2.2) Implies that If the same function (either II or Y, 
becomes equal tc zero on both circles bounding the region of possible motions 
of the axis of the body, then the motion will be oscillatory with respect to 
the angle cp , 
fP= 0 t 

while, If on one of the circles J1- 0 and on the other 
then the motion will be gyratory In cp . During the motion of the 

r-axis from one boundary,clrcle to the other, angle cp will change by n . 
From the relation ji - j = 2 sinv sin6 It follows that the curves j1(6) and 
je((t) Intersect only-at .&e end- olnts 
blosed, snail-like figure (Fig.1 P 

of the Interval 0 < 6 <(n, forming a 
. Motion in ti Is possible only on this 
segment of the ,@-axis, which Is Inside this 
figure. Its position relative to the 6 - 

3 axis 1s determined by the magnitude of the 
constant c , I.e. by the Initial conditions 
of the motion, while Its shape and size 

2 depend on the parameters a and v . When 
v = 0 (which corresponds to the rotation of 
the flywheel only about the r-axle of sym- 
metry of the body), the curves ji(e) and 

1 .ja (9) coincide, I.e. the plane figure dege- 
nerates Into a single line. In this case, 
the carrier will execute a regular preces- 

0 
slon, and 

-1 When v - +rf (I.e. the projection of the 

Fig. 1 kinetic moment of the flywheels on the a- 
axis l&equal to zero), the curves ji ,(o)' 
and ja(6), and consequently the figure' and 

the whole pattern of motion of the x-axle of the body, become symmetric with 
respect to 6 =n 12. In general, as seen from Fl.g.1, depending on the number 

figure, we shall investigate the function jz(6). Its extrema are given by 

a sin 26 = sin(8 + v) (2.3) 
Inveatlgatlon of solutions of this equation for various a and v Is 

best performed by analysis of graphs representing Its left- and right-hand 
sides by separate sine curves differing from each other In amplitude, phase 
and frequency. Using such a graph It Is easy to establish that, depending 
on the values of a and v , (2.3) can have either one or three roots. In 
the limiting case when the sine curves are tangent to each other, (2.3) has 
two roots. 
av-plane, 

To find the position of this llmlti~~~ur;e on the parametric 
we shall denote the values of a , v corresponding to the 

condition of tangency of the sine curves, by a,, , v,+ 'and 6,. Then, assuming 
that at the tangent point the derivatives of both sine curves are the same, 
we have 
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a,sin2~e=sin(-6,+v,), 2a,cos26, =cos(6*+ v*) (2.4) 

Eliminating 6,, we can obtain the explicit equation of the boundary line, 
although In case of numerical computations, parametric representation of 
this line 

tin v* = tanw*, sin (@, + VA 
a* = 

sin26, (2,5) 

Is more convenient. 

Flg.2 shows this line P , dividing the parametric cv-plane Into the 
reglonscorrespondlngto one root of (2.3) (non-shaded region) and to three 
roots (shaded regions). Coordinates of the series of points of this line are 

v*=oo 0017' 2"45' iO"53' 30"35' 45* 59"24' 79"04' 87"12' 90" 
Ia,(=O.5 0.5219 0.6016 0.7578 0.9577 1.0 0.9578 0.7576 0.6028 0.5 

Two roots of Equation (2.3) correspond to the points of transition from 
one region to the other. By the second condition of (2.1) we can assume 
that the right-hand side semi-plane of the av-plane characterizes the func- 
tion Ii(@), while the left-hand side, the function fa (WV . Therefore, the 
extrema of these functions are given by the points distributed In the left- 
and right-hand side semi-plane symmetrically with respect to the a-axis . 
Fig.2 also shows that the function fi(6) can have three extrema only, when 

c < - 0.5 , while for fs(6) the correspond- 
ing condition Is, that a > 0.5 . Assuming 
further that v 2 0 (otherwise we Interchange 
I1 and la), we have dfl/d#>O when 6~0, 
I.e. the extrema of jI((t) occur In the fdl- 
lowing order: maximum, minimum and maximum, 
while fs(6) will have minimum, maximum and 
mlnlmum- (provided all three exist). 

The question whether max *r,?Ys(d) Is of 
the major Importance to the motion of the 
body In cp . Obviously, max /I- fP(O) 1s 
the boundary case. Denoting the values of 
= , v and 6, corresponding to this case 
c+* ) vt+ and Ct,,*r, we can write the cor- 
responding relationship In the form 

a,,sin 2fb** - sin(6,,+ v,,)=O 

a,,sin213,, +cos(ift+ + v&- cosv+,=O (2.6) 

Eliminating eft**, we obtain the equation 
of the line tl dividing the (Iv-plane Into 

Fig. 2 

g f;"$nT6,'n which max ya> f,(O) and 
Obviously, this line. should 

lie c~mpl&ely'wlthln the shaded re 
85 
Ion, 

It has no maximum at all. 
since when only one extremum of fs( 

Parametric representation of this line 
)exlsts, 

t=v**=. 
2(1-- cos +**)2 

sin26,, ’ 

Is convenient for Its construction. 

Coordinates of points on this line are 

-0' O"37' 2"20' 6% 14%' 30"01' v**- 

=** = 
sin (L + VA 

sin26,, (2.7) 

45" 53"23' 75"55'&(t"03' 90" iOO"53' 
Ia,,l=O.5 0.548 0.618 0.735 0.9*7 1.1551.276.1.299 1.193 1.099 1.0 0.7558 

From Fig.2 we see, that lines P and II have two common points. First 
of them Is obvious1 Ial I 0.5 - 0 . The other Is easily found by 
comparing 12.5) and 75.7) which, iogzther yield the following expression 
for 6 

~I)= 2(1-cost+)" 
sin 26 (2.8) 



Hence 6 = QO’,~v = - 3y+3; v = iOO”5%; ] a 1 = 0.7558. For these values, 
point of inflection and the point f.(O) are at the same level. 

Consequently, It follows from Fig.2 that the line IT separates,out of 
the region of existence of three extrema of fa(6) a aegment, CorrespondLng 
to the condition max /& 2,(O) . The behavior of h(6) Is clearly analogous 
to that of f,(e) and corresponds only to the condition a < 0 . 

3. Invortiggtlon of pharo trrjootoslra. The Investigation of phase tra- 

Jectorles in the h-plane can be performed with relatively little dlffi- 

culty owing to the presence of the Integral (1 .X6). It shouldhowever bebcrtm 

in mind, that the general pattern of behavior of phase trajectories corre- 

sponding to various values of c , depends essentially on the region of the 

parametric plane, in which the values of a and Y lie. Fig.3 shows the 

a b c d 

pig. 3 

change of pattern of the phase plane when the characteristic point on the 

ov-plane is transferred, first, from the region above the line n Into the 

region situated between n and r , and then into the region situated under 
the r line (along the straight line v - 45*). Pig.3a constructed for the 

values v II 45” and a = 1.5 showa, that the parameter o of the family of 

phase trajectories can, in general, assume Six critical Values. First two 

which are cl= cos v and on- - co8 v correspond to the case when angle 6 

can assume the values 0 or n . Trajectories corresponding to these values 

Of c , represent the dividing lines separating the regions of existence of 

the types of motion oscillatory In cp , from those of the gyratory motion. 

In the llmlt, the oscillatory cycles enveloped by the dividing line9 degener- 

ate Into equilibrium points with the values c - 04 and o - as . Plxlally, 

the remal.nLng cycle has Its center defined by the crftical value c - c3 , 

and its outer boundary is given by the dividing line c = os , consisting of 

two branches. Equations of the dividing l%nes c = c1 and c = ca are 
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cosp, = -& :q GOSV- 
t 

6 2a cos2 y 1 

Fig.3b corresponds to the case, when the characterlstlc point belonging 

to the parameteric plasIe,lies on the boundary line II . Here the dlvlding 

lines o - de and c - o1 cofncide, therefore the gyratory modes of motion 

in cp are Pound possibfe only in the region between the lines c - c1 and 

c-es * In this case, equation of the dividing line c = cl COinaident 

with r5 - og can he written as 

GOS 
q3 

zEtaa-#t** 6 6 t cos 6,, 

- 

EOS 6 2 z sin” 6** -1 1 (3.2) 

ff the chax%cterlstic point is further displaced into the region con%xQwd 

between the n and r curves (Flg.jc), then the dfvidlng line c - al no 

longer enClOses the center 0 = cI, but d I o3 instead. Center a *I OS, is, 

on the other hand, enclosed by the loop of the dividing line c * ce a AS 
the characteristic point Zylng on the lzv-plane approaohee the line I‘ , the 

loop around the center o = 0% becomes ~m~lller, and disappears COmpletely at 

the moment, at which the point crosses T’ . Phase pattern then 888umes the 

form shown on the Fig. 36 - 

We can see from the above figures, that the snail-like figure repmsents 

suff’icient means of obtaining the qualitative picture of types of motion Of 

the body with respect to the angle @ and rp . Of course, necessary values 

of parameters a and v must be chosen on the av-plane (Fig.2). In the 

number of cases however, determlnatlon of the law of motion of the .?-aXi 

of the body in Bpace, is also necessary, This is equivalent to finding a 

trajectory described by this axfs on the surSace of a fixed sphere, the Cen- 

ter of which coincides with the center of inertia of the body, TO do thie, 

we ahall write the equation for ) , as 

(3.3) 

and shall express the tangent of the angle x formed w B tangent t;o the 

trafectory of the r-axis and the local parallel to the unit sphere 

From this it follows that tan x becomes equal to zero on the limiting 

circles enclos%ng regions OS possible motions , and Waames lnflnlte, when 

When 0 f f cos v z we obvfoualy have X4+1, i.e. t-axis of the body 
passes through the pole oS the unit sphere. We should also note that, if 
one of the roots of the denominator of the fraction (3.4) coincides with one 
of the roots of its numerator, then the trajectory of the t-&a has, on the 
corresponding boundary circle, a cuspal point. Hav+ the eqresaion for 
tan x ,we can easily obtalti the expression for the curvature of the trajeo- 
tory 
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Returning tu EquatSon (3.3) we see that, when R - 0 or v - 0 , the 
body exhlblts regular precession. If, on the other hand, L = 0 , then the 
body exhibits pure rotation about a fixed axis, and its z-axis describes, on 
the unit sphere, 
given in E4j. 

a circle of solid angle v . This agrees with the results 

In general, when all the parameters given above are dif%rent frm zero, 

four types of motion are possible. We shall consider them, using the Eunc- 

tlons fl (fi) and fa (6), given in F%.L, where L / RR = 0.6, C / A = 1/B. 

First type of motion corresponds to og< o < o3 when function fl(6): 
becomes equal to zero on both, upper and lower circles. The values of (' 

on the limit Circles, 2; on the upper and )_'on the lower Circle will be 

Assumlng that L and A are always positive we see, that the velocity 

of motion on each of the boundary circles can be either positive, or nega- 

tive. The trajectory Contained in the strip 6, f 9 \< 6% may have loops 

and cuspal points fF2gs.b and bf. 

Second and third type of motion takes place when ol(o< c,,. ff 

+1< fill Q 6, and when 06 c < ce IT +k3,< 6, \c I!+~. The corresponding 

expressions for $* are 
9+." = $ 

R sin Y 
- sin&y- t I)_. zzz 2 + s 

*_- = .,‘i- I g 

(3.8) 

e_;$+gg. (3.9) 

It is easy to see that the loops are formed only on the 

circles facing the poles of the unit sphere (Rig.'lC). 

.The fourth type will be characterized by the values 

OS-= D -c 01 or c&c 0 c c1 , so that for $' we have 

f3.40f 

where we note the absence of loops on either boundary cir- 

b" cle . Finally, in the limiting case when o = f co8 v, the 

equations for J' and 6' become 

+~:-d_++-)+__'"~ 
1 +eos 6 

C 
6' = R J&KG--- (cos v w “j;S - a sin fi)z (3.11) 

Fig. 4 We 8ee that the velocity 6' does not vanish when 6 = Q 

an& axis of the body passes through the pole of the unit 

sphere without stopping, while the angle $ undergoes a discontinuous change 

of *n. 

The above considerations refer ta the motion of the axis of a spindle- 
shaped body, for which a r 0 . However, using last of the relations of 
(2.1) it is easy to show, that for a disk-shaped body (a < 0), the types of 
motion obtained will be identical. 
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4. Integration of equntlons of motion. In order to Integrate the system 

(1.15), let us write the quadrature for the angle 6 , as 

s 

du 

l/a2 (~1 -u)(u--up)(u--s)(~-w) 
(4.9 

The polynomial under the radical sign Is 

P (24) = sin2 Y (1 - u”) - [a (1 - u”) + u cos v - cl2 (4 -2) 
By considering the values of this polynomial at the points u=*l and 

u=o, we can obtain the relations connecting the roots of the polynomial 

and the parameters a, v and c . They are 

u”p1 = (cos v - c)2, a”p2 = (cos v, + c)2, U2p2 = (a - c)” - sin2 v 

(4.3) 

- UO 

+ h) 

(4.4) 

(4.5) 

Q = V(1 - PS) (1 - q2 + p1(1+ Aa) f 2 v/m (1 - A) 

Al = v,+ r/E h 
?pa - v/pi 

VPz- IGl ’ 2= VE+IG 

For A we choose the value A1 or A, , for which (cos VI * 1 

(4.6) 

, The 
relations obtained allow us to choose the parameters necessary for the real- 

ization of a given type of the carrier. 

Is alwa 
the lnt 
of P(u 
we can, 

Let us Integrate Equation (4.1). 
ys negative when 11~1 > 1 

We should note that the polynomial P(u) 
hence all Its real roots are contained In 

erval -1sur1 (Flg.3. Assuming for example that only two roots 
) are real and, that the motion takes place within the strip ua'usy 
using the notation of [5], write the integral of (4.1) as 

(4.7) 

P(u)=a%[(u-m)2+na](u1-u)(u-u2), 43 =2 ma-1 [;;;-.uu;l’/ 
2 

k =A. (u1-%)2-(P-q)2 
[ 3 

‘I* 
p = (m - u~)~ + n2, q2 = (m - Q2 + na, 2 PQ 

Here F(@,k) is the elliptic Integral of the first kind. Assuming, that 
the process of motion starts at some lnltlal value u,, which, in general, is 
not a root of p(u) 3 we have 

-& [F ($0, 4 - F (6, k)l (4.8) 

from which we have 

sin $I = sn (z T/w + Fo), 
and finally we obtain 

cos $0 = cn (z v/w + Fo) (4.9’) 



764 B.A. bol’nlkov 

Solution for the case of four real roots of P(u) can be constructed in 
an analogous manner. To find the explicit expression for the angle + 
must substitute the expression obtained for u(T) Into (3.3), written & t:e 
form 

(4.11) 

Then, angle $ can be represented as a sum of a linear function T and 
of integrals of the form 

s dT s dr 
cn (T + J-0) + b ’ sn (r + PO) + b (4.12) 

which can be expressed in terms of theta-function. 

In conclusion we shall note that for an asymmetric body, e.g. when 
A#B#C, solution can be represented In an analogous form, if we assume 
that LI = 0 . 

Indeed, in this case the integral (1.14) will yield 

- 
cos(p= 

R sin v '-& v/aSu2 + 2p'u + r' 
(l/A--I/BfLsin@ (4.f3) 

Using this to eliminate the angle cp from the second equation of (1.13), 
we arrive at the following Integral for 6 : 

s du 

va'u2+2P'u + 7' va"rL2 + 2P_~4 + 7"+ 26" Jfc$iiJ+ 2p’~+f - s Rdt (**“’ 

Here 0 Is the constant of integration from (1.14). The integral (4.14) 
aan, by change of variables, 
for example that a'> 0 , 

be reduced to an elllptii: integral. Assuming 
we shall use the Euler substitution 

if ly&? + 2B’u-+-r’z jmu+v 

from which, squaring and differentiating we obtain 

(4.16) 

(4.17) 

as a result of which, the integral (4.14) assumes the form (4.18) 
dV 

v’ ‘/&z” (79 - f)’ + (02 _ y’) (8’ - V VyJ) (P” + 6” l/a;) + (y’ i_ VS”) (p’ - V J&;)’ 
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Here, under the radical sign, we have a 4-th degree polynomial, hence all 
the transformations that follow, will be analo ous to the previous ones. To 
find the angle $ , It remains to replace, In t 4.11), u by 0 . This will 
result In an Integral of the type of (4.12). 
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